A Single Nucleotide Change Affects Fur-Dependent Regulation of sodB in H. pylori

نویسندگان

  • Beth M. Carpenter
  • Hanan Gancz
  • Reyda P. Gonzalez-Nieves
  • Abby L. West
  • Jeannette M. Whitmire
  • Sarah L. J. Michel
  • D. Scott Merrell
چکیده

Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB) is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur) in the absence of iron (apo-Fur regulation) [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur.

Maintaining iron homeostasis is a necessity for all living organisms, as free iron augments the generation of reactive oxygen species like superoxide anions, at the risk of subsequent lethal cellular damage. The iron-responsive regulator Fur controls iron metabolism in many bacteria, including the important human pathogen Helicobacter pylori, and thus is directly or indirectly involved in regul...

متن کامل

Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter.

In Escherichia coli, the expression of sodB, which encodes iron superoxide dismutase, has been suggested to be activated by Fur, the iron-responsive global regulator initially characterized as a transcriptional repressor. We investigated sodB regulation by functional analysis of the sodB promoter using sodB-lac fusions with various truncated and mutated promoters. Several cis- and trans-acting ...

متن کامل

Control of Escherichia coli Superoxide Dismutase

The ferric uptake regulation (fur) gene product participates in regulating expression of the manganeseand iron-containing superoxide dismutase genes of Escherichia coli. Examination of ,-galactosidase activity coded from a chromosomal d(sodA'-'lacZ) fusion suggests that metallated Fur protein acts as a transcriptional repressor of sodA (manganese superoxide dismutase [MnSOD]). Gel retardation a...

متن کامل

Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization.

Superoxide dismutase (SOD) is a nearly ubiquitous enzyme among organisms that are exposed to oxic environments. The single SOD of Helicobacter pylori, encoded by the sodB gene, has been suspected to be a virulence factor for this pathogenic microaerophile, but mutations in this gene have not been reported previously. We have isolated mutants with interruptions in the sodB gene and have characte...

متن کامل

Nordihydroguaiaretic Acid Disrupts the Antioxidant Ability of Helicobacter pylori through the Repression of SodB Activity In Vitro

Iron-cofactored superoxide dismutase (SodB) of Helicobacter pylori plays an indispensable role in the bacterium's colonization of the stomach. Previously, we demonstrated that FecA1, a Fe(3+)-dicitrate transporter homolog, contributes to SodB activation by supplying ferrous iron (Fe(2+)) to SodB, and fecA1-deletion mutant strains have reduced gastric mucosal-colonization ability in Mongolian ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009